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ON THE MOTION OF FLUID NEAR A STRETCHING CIRCULAR CYLINDER* 

H.I. BURDE 

New exact solutions of the Navier-Stokes equations are obtained, describingthe 
stationary axisymmetric motions of an incompressible fluid near an infinite circular 
cylinder whose surface stretches and expands in the axial direction, so that the axial 
velocity component at the boundary is linear inthe corresonding coordinate. 

The solutions for the case of a stretching plane were discussed in /l-3/. In /4/, the 
solution of /l/ was interpreted as the motion of a fluid with a free surface, caused by a 
tangential force applied to the surface. 

1. Let us consider the axisymmetric stationary motion of a viscous incompressible 
fluid about an infinite circular cylinder of radius R, stretching along its axis. The 
axial and radial component of the velocity, u and v, are given at the cylinder surface in 
cylindrical x, r coordinates (the x axis is directed along the axis of the cylinder) by 
the relations 

r=R, u=kz, v=O (1.11 
Seeking the solutions of the Navier-Stokes equations in the form 

(1.2) 

where a and c are constants, we arrive at the following system of equations for the functions 
cp, B, F: 

2 (& rp",' + cpcp'- (P'S + cs = 0 (4.3) 
2 C&g')'+ g'cp - gcp' + a = 0 
4i=F' = 4EM + 2&$ - cpg 

The boundary conditions at the cylinder surface follow from (1.11 

& = &,,,, cp = 0, Q’ = 1, g = 0; &m = kR'/(lv) (i.4) 

The form of the boundary conditions at infinity is determined by the presence and 
structure of the external flow. 

2.We begin our investigation of the solutions of system (1.3)by considering the case 
when the motion of the fluid occurs only as a result of stretching of the cylinder (there is 
no external flow). We have for this case c=O,g=O,cr=O and a boundary condition of the 
form E*OO,Q’=o. 

A solution of the equation for Q satisfying this condition and the first condition 
of (1.41, has the form 

Q = 6 (E - &d/(2&+ bo) (2.0 

The second condition of (1.4) will be satisfied only when a definite relation connects 
the parameters k,~, R: 

k = i6v/(3R2) (2.21 
Determining the function F from the last equation of (1.3) and using (1.21, we arrive 

at the relations for the velocity and pressure components, which yield a solution of the 
problem under the condition (2.2) 

9kz 
u=,,, 

F=-3Bpvk 

(8.3) 
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In the case when the stretching cylinder is streamlined by a homogeneous flow (r-.x. 
II = U,) parallel to the x axis, we find the function g from the second equation of (1.3) 
and obtain, at 0 = 0, taking into account (1.4), (2.1) and (2.2), 

II = g!m-22 + za-“C’, [2q” - 4rj + a-1 + 31n a + A]; A = v5 - 31n 3 (2.4) 

In the case when the external flow is a shear flow (r-00, u=A,ff A,ln5fA,), the 
velocity 6istribution is found from the solution of Eqs.(1.3) at a # 0. We omit the 
corresponding formulas for brevity. 

The solutions (2.1)-(2.4) are analogous to the solutions obtained in 11, 2/ for the 
case of a stretching plate. The solution of /l/, as well as (2.2) and (2.3), describe a 
flow appearing as a result of stretching of the surface, and the uniqueness of the solution 
given in /l/ was proved in /3/. The solution given in /2/, as well as (2.2) and (2.4), 
describe a homogeneous flow past a stretching surface. 

Let us compare (2.2) and (2.3) with the solution given in /l/, in the region of flow 
near the surface (r- R((R). The solution given in /l/ has the form 

V, = kse +, “g = - ~fK(l - e-q, $ = V’klvy 

(the y axis is perpendicular to the plane) and at small p it is given by the expressions 

PX = kx (1 - p), uy = - l/ii$ 

We put r=R+y in (2.3) and use (2.2) to obtain, for ~4 R, 

q = (i + V-F@4)2, p = I/klvy 

u = ks (1 - Zfi/ f/s), v = - V’Ffi 

(2.5) 

Comparing the above expressions with (2.5) we see, that the influence of the curvature 
of the surface on the form of the solution manifests itself even at distances small compared 
with the radius of the cylinder. 

Let us now consider the motion of the fluid near the stretching cylinder under the 
conditions that the fluid impinges on the cylinder at infinity in the radial direction, and 
spreads in opposite directions from the circle z = 0: 

r-00, u = km, v = -V,kcr 

In this case the first equation of (1.3) must be solved at c#O, with boundary 
condition at infinity of the form 

E-m, cp' = c 
In this case we can also find an exact solution of the equations for cp, satisfying 

the condition at infinity and one of the conditions of (1.4) 

m = cg - 6 - (& - 6) ,c(E,-E)'a (1.fi) 

The second condition of (1.4) will be satisfied provided that the following relation 
holds: 

k = 4vhR-2c-‘, h = 2 + c-l (2.7) 

We will write expressions for u and v, corresponding to (2.6) and (2.7), and expressions 
for the pressure obtained by determining the function F from the last equation of (1.3) 

u=kcz(i+f), f=(h-3)e’(‘-q) (2.8) 
u = --‘/,kcr (hq)-’ (hq - 3 - f) 

,D = --‘/,pvkc [kc\‘-‘3 + hq + (3 -+ /)*iL-‘q-‘1 

In the special case of c=l, the solution of the first equation of (1.3) has the form 
cP=&-El0 (this solution satisfies the conditions (1.4) without restricting (2.7)). The 
corresponding velocity distribution differs from the potential flow only in the term .-"llr 
in the expression for u. The solution at C= 1 admits of a fairly simple generalization to 
the case when the plane of radial flow of the fluid at infinity impinging on the cylinder 
is displaced relative to the fixed circle Z= 0: 

r - co, u = k (z + b), c = -‘lpkr 

Determining g from the second equation of (1.3) at LI= I/kKb and taking into account 
(1.21, we obtain 

The constant A is found from condition (l.l), and we assume the integration constant 
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to be equal to zero. We can carry out the integration in (2.9) for discrete values of m= 
-2n (n = 0, i, 2, . . .) . Let us write out the expressions obtained for the first three values of m 

u = k (r+ b Ii -H (m, n)l) 
H (0, q) = In Ei (-_tl) + Zq]/[Ei (-1) + e-l] 
H (-2, n) = e2(*-q), H (-4, n) = YJ (31 + 2) ,J(l-*I) 

where Ei (2) is an integral exponential function. 
The solutions discussed above can also be used in a situation when the surface of the 

cylinder not only stretches, but also moves with constant velocity in the direction of the 
2 axis. In this case we replace the boundary conditions (1.1) by the relations 

r= R, u= kt+ U,, v=o (2.10) 

Solved (2.4) satisfies this condition at another value of the constant A: 

A = bls - 31~ 3 - gl,V,IV, 

The solution (2.6)-(2.8) can be generalized to the case (2.10), provided that we add 
the term pkV&, to P in (2.8) and the term fag to u, where 

g = Ll,c (vk)-I’* [I + (h - 3) &*+I 

The solution (2.9) can be generalized to the case (2.10) by leaving the constant A 

undetermined. 
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ON THE PROBLEM OF THE COLLAPSE OF CAVITATIONAL VOIDS* 

A.V. KONONOV 

The part played by the capillary properties of a medium in the problem of the collapse 
on an empty spherical cavity in a viscous incompressible fluid modelling the stage of 
collapse of cavitational voids is studied. Methods of qualitative theory are used to study 
the differential equations describing the dynamics of the boundary of the cavity. A pattern 
of behaviour of the integral curves in the Phase plane is obtained and used to produce a 
complete description of all possible modes of collapse of the cavity. 

The problem of the filling of an empty spherical cavity with an ideal incompressible 
fluid was studied by Rayleigh /l/, who showed that the velocity of the liquid boundary of 
the cavity increases without limit as &I. as its radius R decreases to zero. The time 
in which the cavity disappears is always finite. 

Taking into account the viscosity of the fluid 121 leads to the conclusion that a 
critical Reynoids number Re* exists, separating two, essentially different modes of filling 
the cavity. When Re>RB*, the character of the motion is analogous to that in Rayleigh's 
case. The principal term of the expansion of the velocity V of the boundary of the cavity 
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